Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Ultrasound Med Biol ; 50(4): 610-616, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290910

RESUMO

OBJECTIVE: Neonatal hypoxic-ischemic brain damage (HIBD) can have long-term implications on patients' physical and mental health, yet the available treatment options are limited. Recent research has shown that low-intensity pulsed ultrasound (LIPUS) holds promise for treating neurodegenerative diseases and traumatic brain injuries. Our objective was to explore the therapeutic potential of LIPUS for HIBD. METHODS: Due to the lack of a suitable animal model for neonatal HIBD, we will initially simulate the therapeutic effects of LIPUS on neuronal cells under oxidative stress and neuroinflammation using cell experiments. Previous studies have investigated the biologic responses following intracranial injection of 6-hydroxydopamine (6-OHDA). In this experiment, we will focus on the biologic effects produced by LIPUS treatment on neuronal cells (specifically, SH-SY5Y cells) without the presence of other neuroglial cell assistance after stimulation with 6-OHDA. RESULTS: We found that (i) pulsed ultrasound exposure, specifically three-intermittent sonication at intensities ranging from 0.1 to 0.5 W/cm², did not lead to a significant decrease in viability among SH-SY5Y cells; (ii) LIPUS treatment exhibited a positive effect on cell viability, accompanied by an increase in glial cell-derived neurotrophic factor (GDNF) levels and a decrease in caspase three levels; (iii) the administration of 6-OHDA had a significant impact on cell viability, resulting in a decrease in both brain cell-derived neurotrophic factor (BDNF) and GDNF levels, while concurrently elevating caspase three and matrix metalloproteinase-9 (MMP-9) levels; and (iv) LIPUS treatment demonstrated its potential to alleviate the changes induced by 6-OHDA, particularly in the levels of BDNF, GDNF, and tyrosine hydroxylase (TH). CONCLUSION: LIPUS treatment may possess partial therapeutic capabilities for SH-SY5Y cells damaged by 6-OHDA neurotoxicity. Our findings enhance our understanding of the effects of LIPUS treatment on cell viability and its modulation of key factors involved in the pathophysiology of HIBD and show the promising potential of LIPUS as an alternative therapeutic approach for neonates with HIBD.


Assuntos
Produtos Biológicos , Neuroblastoma , Animais , Recém-Nascido , Humanos , Fator Neurotrófico Derivado do Encéfalo , Oxidopamina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ondas Ultrassônicas , Caspases
2.
Oncogene ; 43(7): 511-523, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177412

RESUMO

Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that can bind to several receptors and mediate distinct molecular pathways in various cell settings. Changing levels of LECT2 have been implicated in multiple human disease states, including cancers. Here, we have demonstrated reduced serum levels of LECT2 in patients with epithelial ovarian cancer (EOC) and down-regulated circulating Lect2 as the disease progresses in a syngeneic mouse ID8 EOC model. Using the murine EOC model, we discovered that loss of Lect2 promotes EOC progression by modulating both tumor cells and the tumor microenvironment. Lect2 inhibited EOC cells' invasive phenotype and suppressed EOC's transcoelomic metastasis by targeting c-Met signaling. In addition, Lect2 downregulation induced the accumulation and activation of myeloid-derived suppressor cells (MDSCs). This fostered an immunosuppressive microenvironment in EOC by inhibiting T-cell activation and skewing macrophages toward an M2 phenotype. The therapeutic efficacy of programmed cell death-1 (PD-1)/PD-L1 pathway blockade for the ID8 model was significantly hindered. Overall, our data highlight multiple functions of Lect2 during EOC progression and reveal a rationale for synergistic immunotherapeutic strategies by targeting Lect2.


Assuntos
Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Imunossupressores , Modelos Animais de Doenças , Microambiente Tumoral/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
3.
J Control Release ; 362: 524-535, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673307

RESUMO

Chimeric antigen receptor (CAR)-modified natural killer (NK) cells are recognized as promising immunotherapeutic agents for cancer treatment. However, the efficacy and trafficking of CAR-NK cells in solid tumors are hindered by the complex barriers present in the tumor microenvironment (TME). We have developed a novel strategy that utilizes living CAR-NK cells as carriers to deliver anticancer drugs specifically to the tumor site. We also introduce a time-lapse method for evaluating the efficacy and tumor specificity of CAR-NK cells using a two-photon microscope in live mouse models and three-dimensional (3D) tissue slide cultures. Our results demonstrate that CAR-NK cells exhibit enhanced antitumor immunity when combined with photosensitive chemicals in both in vitro and in vivo tumor models. Additionally, we have successfully visualized the trafficking, infiltration, and accumulation of drug-loaded CAR-NK cells in deeply situated TME using non-invasive intravital two-photon microscopy. Our findings highlight that tumor infiltration of CAR-NK cells can be intravitally monitored through the two-photon microscope approach. In conclusion, our study demonstrates the successful integration of CAR-NK cells as drug carriers and paves the way for combined cellular and small-molecule therapies in cancer treatment. Furthermore, our 3D platform offers a valuable tool for assessing the behavior of CAR cells within solid tumors, facilitating the development and optimization of immunotherapeutic strategies with clinical imaging approaches.

4.
Br J Cancer ; 129(3): 503-510, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37386137

RESUMO

BACKGROUND: Cancer treatment in female adolescent and young adult (AYA) cancer survivors (i.e., those diagnosed between 15 and 39 years of age) may adversely affect multiple bodily functions, including the reproductive system. METHODS: We initially assembled a retrospective, nationwide population-based cohort study by linking data from two nationwide Taiwanese data sets. We subsequently identified first pregnancies and singleton births to AYA cancer survivors (2004-2018) and select AYA without a previous cancer diagnosis matched to AYA cancer survivors for maternal age and infant birth year. RESULTS: The study cohort consisted of 5151 and 51,503 births to AYA cancer survivors and matched AYA without a previous cancer diagnosis, respectively. The odds for overall pregnancy complications (odds ratio [OR], 1.09; 95% confidence interval [CI], 1.01-1.18) and overall adverse obstetric outcomes (OR, 1.07; 95% CI, 1.01-1.13) were significantly increased in survivors compared with matched AYA without a previous cancer diagnosis. Specifically, cancer survivorship was associated with an increased risk of preterm labour, labour induction, and threatened abortion or threatened labour requiring hospitalisation. CONCLUSIONS: AYA cancer survivors are at increased risk for pregnancy complications and adverse obstetric outcomes. Efforts to integrate individualised care into clinical guidelines for preconception and prenatal care should be thoroughly explored.


Assuntos
Sobreviventes de Câncer , Neoplasias , Complicações na Gravidez , Gravidez , Recém-Nascido , Humanos , Feminino , Adolescente , Adulto Jovem , Estudos Retrospectivos , Estudos de Coortes , Taiwan/epidemiologia , Complicações na Gravidez/epidemiologia , Neoplasias/complicações , Neoplasias/epidemiologia , Morbidade
5.
Exp Biol Med (Maywood) ; 248(7): 656-664, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37340785

RESUMO

Ellagic acid, the marker component of peels of Punica granatum L., is known traditionally to treat traumatic hemorrhage. In this study, the cellular mechanism underlying ellagic acid-induced anti-inflammation was investigated using lipopolysaccharides (LPSs) as a neuroinflammation inducer. Our in vitro data showed that LPS (1 µg/mL) consistently phosphorylated ERK and induced neuroinflammation, such as elevation in tumor necrosis factor-α (TNF-α) and nitric oxide production in treated BV-2 cells. Incubation of ellagic acid significantly inhibited LPS-induced ERK phosphorylation and subsequent neuroinflammation in treated BV-2 cells. Furthermore, our in vivo study of neuroinflammation employed an intranigral infusion of LPS that resulted in a time-dependent elevation in phosphorylated ERK levels in the infused substantia nigra (SN). Oral administration of ellagic acid (100 mg/kg) significantly attenuated LPS-induced ERK phosphorylation. A four-day treatment of ellagic acid did not alter LPS-induced ED-1 elevation but ameliorated LPS-induced reduction in CD206 and arginase-1 (two biomarkers of M2 microglia). A seven-day treatment of ellagic acid abolished LPS-induced increases in heme-oxygenase-1, cyclo-oxygenase 2, and α-synuclein trimer levels (a pathological hallmark) in the infused SN. At the same time, ellagic acid attenuated LPS-induced increases in active caspase 3 and receptor-interacting protein kinase-3 levels (respective biomarkers of apoptosis and necroptosis) as well as reduction in tyrosine hydroxylase-positive cells in the infused SN. In silico analysis showed that ellagic acid binds to the catalytic site of MEK1. Our data suggest that ellagic acid is capable of inhibiting MEK1-ERK signaling and then attenuated LPS-induced neuroinflammation, protein aggregation, and programmed cell deaths. Moreover, M2 microglial polarization is suggested as a novel antineuroinflammatory mechanism in the ellagic acid-induced neuroprotection.


Assuntos
Lipopolissacarídeos , Microglia , Ratos , Animais , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Ácido Elágico/farmacologia , Ácido Elágico/metabolismo , Doenças Neuroinflamatórias , Biomarcadores/metabolismo , Encéfalo
6.
J Orthop Surg Res ; 18(1): 182, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894998

RESUMO

BACKGROUND: Hip fracture is a common but devastating disease with a high mortality rate in the older adult population. C-reactive protein (CRP) is a predictor of the prognosis in many diseases, but its correlations with patient outcomes following hip fracture surgery remain unclear. In this meta-analysis, we investigated the correlation between perioperative CRP level and postoperative mortality in patients undergoing hip fracture surgery. METHODS: PubMed, Embase, and Scopus were searched for relevant studies published before September 2022. Observational studies investigating the correlation between perioperative CRP level and postoperative mortality in patients with hip fracture were included. The differences in CRP levels between the survivors and nonsurvivors following hip fracture surgery were measured with mean differences (MDs) and 95% confidence intervals (CIs). RESULTS: Fourteen prospective and retrospective cohort studies comprising 3986 patients with hip fracture were included in the meta-analysis. Both the preoperative and postoperative CRP levels were significantly higher in the death group than in the survival group when the follow-up duration was ≥ 6 months (MD: 0.67, 95% CI: 0.37-0.98, P < 0.0001; MD: 1.26, 95% CI: 0.87-1.65, P < 0.00001, respectively). Preoperative CRP levels were significantly higher in the death group than in the survival group when the follow-up duration was ≤ 30 days (MD: 1.49, 95% CI: 0.29-2.68; P = 0.01). CONCLUSIONS: Both higher preoperative and postoperative CRP levels were correlated with higher risk of mortality following hip fracture surgery, suggesting the prognostic role of CRP. Further studies are warranted to confirm the ability of CRP to predict postoperative mortality in patients with hip fracture.


Assuntos
Proteína C-Reativa , Fraturas do Quadril , Humanos , Idoso , Proteína C-Reativa/metabolismo , Estudos Retrospectivos , Estudos Prospectivos , Complicações Pós-Operatórias/epidemiologia , Fraturas do Quadril/epidemiologia , Fatores de Risco
7.
Diagnostics (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900027

RESUMO

Pain originating in the sacroiliac joint (SIJ) is a contributor to chronic lower back pain. Studies on minimally invasive SIJ fusion for chronic pain have been performed in Western populations. Given the shorter stature of Asian populations compared with Western populations, questions can be raised regarding the suitability of the procedure in Asian patients. This study investigated the differences in 12 measurements of sacral and SIJ anatomy between two ethnic populations by analyzing computed tomography scans of 86 patients with SIJ pain. Univariate linear regression was performed to evaluate the correlations of body height with sacral and SIJ measurements. Multivariate regression analysis was used to evaluate systematic differences across populations. Most sacral and SIJ measurements were moderately correlated with body height. The anterior-posterior thickness of the sacral ala at the level of the S1 body was significantly smaller in the Asian patients compared with the Western patients. Most measurements were above standard surgical thresholds for safe transiliac placement of devices (1026 of 1032, 99.4%); all the measurements below these surgical thresholds were found in the anterior-posterior distance of the sacral ala at the S2 foramen level. Overall, safe placement of implants was allowed in 84 of 86 (97.7%) patients. Sacral and SIJ anatomy relevant to transiliac device placement is variable and correlates moderately with body height, and the cross-ethnic variations are not significant. Our findings raise a few concerns regarding sacral and SIJ anatomy variation that would prevent safe placement of fusion implants in Asian patients. However, considering the observed S2-related anatomic variation that could affect placement strategy, sacral and SIJ anatomy should still be preoperatively evaluated.

8.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902368

RESUMO

OBJECTIVES: Titanium implants are regarded as a promising treatment modality for replacing missing teeth. Osteointegration and antibacterial properties are both desirable characteristics for titanium dental implants. The aim of this study was to create zinc (Zn)-, strontium (Sr)-, and magnesium (Mg)-multidoped hydroxyapatite (HAp) porous coatings, including HAp, Zn-doped HAp, and Zn-Sr-Mg-doped HAp, on titanium discs and implants using the vapor-induced pore-forming atmospheric plasma spraying (VIPF-APS) technique. METHODS: The mRNA and protein levels of osteogenesis-associated genes such as collagen type I alpha 1 chain (COL1A1), decorin (DCN), osteoprotegerin (TNFRSF11B), and osteopontin (SPP1) were examined in human embryonic palatal mesenchymal cells. The antibacterial effects against periodontal bacteria, including Porphyromonas gingivalis and Prevotella nigrescens, were investigated. In addition, a rat animal model was used to evaluate new bone formation via histologic examination and micro-computed tomography (CT). RESULTS: The ZnSrMg-HAp group was the most effective at inducing mRNA and protein expression of TNFRSF11B and SPP1 after 7 days of incubation, and TNFRSF11B and DCN after 11 days of incubation. In addition, both the ZnSrMg-HAp and Zn-HAp groups were effective against P. gingivalis and P. nigrescens. Furthermore, according to both in vitro studies and histologic findings, the ZnSrMg-HAp group exhibited the most prominent osteogenesis and concentrated bone growth along implant threads. SIGNIFICANCE: A porous ZnSrMg-HAp coating using VIPF-APS could serve as a novel technique for coating titanium implant surfaces and preventing further bacterial infection.


Assuntos
Durapatita , Osteogênese , Ratos , Humanos , Animais , Titânio/farmacologia , Magnésio , Zinco , Microtomografia por Raio-X , Hidroxiapatitas , Gases , Estrôncio , Materiais Revestidos Biocompatíveis , Propriedades de Superfície
9.
Molecules ; 28(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903419

RESUMO

The acidic extracellular microenvironment has become an effective target for diagnosing and treating tumors. A pH (low) insertion peptide (pHLIP) is a kind of peptide that can spontaneously fold into a transmembrane helix in an acidic microenvironment, and then insert into and cross the cell membrane for material transfer. The characteristics of the acidic tumor microenvironment provide a new method for pH-targeted molecular imaging and tumor-targeted therapy. As research has increased, the role of pHLIP as an imaging agent carrier in the field of tumor theranostics has become increasingly prominent. In this paper, we describe the current applications of pHLIP-anchored imaging agents for tumor diagnosis and treatment in terms of different molecular imaging methods, including magnetic resonance T1 imaging, magnetic resonance T2 imaging, SPECT/PET, fluorescence imaging, and photoacoustic imaging. Additionally, we discuss relevant challenges and future development prospects.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Peptídeos/química , Imageamento por Ressonância Magnética , Concentração de Íons de Hidrogênio , Microambiente Tumoral
10.
Thromb Res ; 223: 146-154, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753876

RESUMO

Due to the delayed and vague symptoms, it is difficult to early diagnose mesenteric ischemia injuries in the dynamics of acute illness, leading to a 60-80 % mortality rate. Here, we found plasma fluorescence spectra can rapidly assess the severity of mesenteric ischemia injury in animal models. Ischemia-reperfusion damage of the intestine leads to multiple times increase in NADH, flavins, and porphyrin auto-fluorescence of blood. The fluorescence intensity ratio between blue-fluorophores and flavins can reflect the occurrence of shock. Using liquid chromatography and mass spectroscopy, we confirm that riboflavin is primarily responsible for the increased flavin fluorescence. Since humans absorb riboflavin from the intestine, its increase in plasma may indicate intestinal mucosa injury. Our work suggests a self-calibrated and reagent-free approach to identifying the emergence of fatal mesenteric ischemia in emergency departments or intensive care units.


Assuntos
Isquemia Mesentérica , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Ratos Wistar , Modelos Animais de Doenças , Riboflavina
11.
Small ; 19(16): e2205420, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36670081

RESUMO

Climate change is causing droughts and water shortages. Membrane desalination is one of the most widely employed conventional methods of creating a source of clean water, but is a very energy-intensive process. Membrane separation requires high salt selectivity across nano-channels, yet traditional techniques remain inefficient in this regard. Herein, a bioinspired, chemically robust, amyloid-fibril-based nanotube is designed, exhibiting water permeability and salt rejection properties capable of providing highly efficient desalination. Molecular dynamics simulations show that nano-dewetting facilitates the unidirectional motion of water molecules on the surface of amyloid beta (Aß) sheets owing to the ratchet structure of the underlying potential surface and the broken detailed balance. The water inside the self-assembled Aß nanotube (ABNT) overflows, while the passage of salts can be blocked using amphiphilic peptides. The designed nanofilter ABNT shows 100% desalination efficiency with perfect NaCl rejection. The production of ≈2.5 tons of pure water per day without any energy input, which corresponds to a water flux up to 200 times higher than those of existing commercial methods, is assessed by this simulation method. These results provide a detailed fundamental understanding of potential high-performance nanotechnologies for water treatment.

12.
J Microbiol Immunol Infect ; 56(1): 84-92, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36376217

RESUMO

BACKGROUND/PURPOSE: Clinical data on carbapenem-resistant Enterobacterales (CRE) bacteremia in the pediatric population are limited. This study investigated the clinical characteristics and outcomes of pediatric CRE bacteremia. METHODS: Clinical data on bacteremia caused by carbapenem-susceptible and carbapenem-resistant Enterobacterales, including Escherichia coli, Klebsiella spp., Enterobacter spp., Serratia marcescens, Proteus mirabilis, Citrobacter spp., and Morganella spp., in pediatric patients from a children's hospital in Taiwan were retrospectively retrieved and analyzed. RESULTS: From January 2013 to December 2021, 471 clinical isolates of Enterobacterales bacteremia were identified in 451 episodes from 379 pediatric patients. Among all the isolates, the predominant species were E. coli (199/471, 42.2%), Klebsiella spp. (168/471, 35.6%), and Enterobacter spp. (59/471, 12.5%), with carbapenem-resistance rates of 1.5%, 11.9%, and 25.0%, respectively. Overall, 40 (8.4%) showed a carbapenem resistance phenotype. Patients' all-cause mortality rate at 14 days was significantly higher in CRE bacteremia episodes than non-CRE ones (12.5% vs. 3.6%, p < 0.05). The predicting factor of a CRE bacteremia episode was the causative agent of Enterobacter spp. (adjusted OR of 2.551, CI 1.073-6.066, p < 0.05) and ESBL-producing phenotype (adjusted OR 14.268, CI 5.120-39.762, p < 0.001). CONCLUSION: Bloodstream infections caused by CRE are associated with a higher mortality rate in the pediatric population. Attention must be paid to preventing and managing pediatric patients with CRE infections.


Assuntos
Bacteriemia , Carbapenêmicos , Criança , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Estudos Retrospectivos , Bacteriemia/tratamento farmacológico , Klebsiella , beta-Lactamases , Testes de Sensibilidade Microbiana
13.
Diagnostics (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36552975

RESUMO

Osteoporosis is characterized by low bone mass and increased bone fragility. Numerous studies have suggested that inflammation contributes to its pathogenesis. The neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are simple, noninvasive biomarkers that can reflect the inflammation status on human body. However, evidence on their associations with osteoporosis remains scant. The PubMed, Embase, and Cochrane Library databases were searched for relevant studies from their inception to April 2022. Observational studies providing complete NLR or PLR data in both the osteoporosis and normal bone mineral density (BMD) groups were included. Studies involving individuals at risk of secondary osteoporosis or restricted to a certain disease population were excluded. The main outcome was the associations of NLR and PLR with osteoporosis. Between-group differences were measured using mean differences (MDs) and 95% confidence intervals (CIs). In our analysis, both NLR and PLR were significantly higher in the osteoporosis group (MD = 0.494, 95% CI: 0.339−0.649, p < 0.0001; MD = 23.33, 95% CI: 4.809−41.850, p = 0.014, respectively) than in the normal BMD group. NLR was significantly higher in postmenopausal women with osteoporosis (MD = 0.432, 95% CI: 0.309−0.544, p < 0.0001). Our findings suggest the associations of NLR and PLR with osteoporosis. NLR and PLR constitute potential targets in osteoporosis screening.

14.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362057

RESUMO

Oral mucositis is a common adverse effect of cancer therapy. Probiotics have been shown to exert anti-inflammatory and immunomodulatory effects. We performed a meta-analysis of randomized controlled trials (RCTs) to investigate whether probiotics can prevent cancer therapy−induced oral mucositis. We searched PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases for trials related to probiotics and oral mucositis published before September 2022; no language restrictions were applied. The primary outcome was the incidence of oral mucositis and severe oral mucositis. Secondary outcomes were the requirement for enteral nutrition during treatment, body weight loss, and decreased quality of life. The study has been registered in PROSPERO (number: CRD 42022302339). Eight RCTs, including 708 patients, were reviewed; however, a meta-analysis of only seven trials could be performed. Three trials using Lactobacilli-based probiotics reported that the incidence of oral mucositis in the probiotic group was significantly low (risk ratio [RR] = 0.84, 95% confidence interval [CI] = 0.77−0.93, p = 0.0004). Seven trials reported a significantly low incidence of severe oral mucositis in the probiotic group (RR = 0.65, 95% CI = 0.53−0.81, p < 0.0001). The requirement of enteral nutrition was significantly low in the probiotic group (odds ratio = 0.34, 95% CI: 0.13−0.92, p < 0.05). This study demonstrated the effectiveness of probiotics in the prevention and mitigation of cancer therapy−induced oral mucositis. We recommend the use of probiotics to prevent and treat oral mucositis during cancer therapy.


Assuntos
Neoplasias , Probióticos , Estomatite , Humanos , Probióticos/uso terapêutico , Estomatite/induzido quimicamente , Estomatite/prevenção & controle , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Lactobacillus , Nutrição Enteral
15.
Cell Death Dis ; 13(11): 995, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433943

RESUMO

N-α-acetyltransferase 10 protein, Naa10p, is involved in various cellular functions impacting tumor progression. Due to its capacity to acetylate a large spectrum of proteins, both oncogenic and tumor-suppressive roles of Naa10p have been documented. Here, we report an oncogenic role of Naa10p in promoting metastasis of esophageal cancer. NAA10 is more highly expressed in esophageal cancer tissues compared to normal tissues. Higher NAA10 expression also correlates with poorer survival of esophageal cancer patients. We found that NAA10 expression was transcriptionally regulated by the critical oncogene c-Myc in esophageal cancer. Furthermore, activation of the c-Myc-Naa10p axis resulted in upregulated cell invasiveness of esophageal cancer. This increased cell invasiveness was also elucidated to depend on the enzymatic activity of Naa10p. Moreover, Naa10p cooperated with Naa15p to interact with the protease inhibitor, PAI1, and prevent its secretion. This inhibition of PAI1 secretion may derive from the N-terminal acetylation effect of the Naa10p/Naa15p complex. Our results establish the significance of Naa10p in driving metastasis in esophageal cancer by coordinating the c-Myc-PAI1 axis, with implications for its potential use as a prognostic biomarker and therapeutic target for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Humanos , Acetilação , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/fisiopatologia , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
16.
Front Chem ; 10: 944556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923258

RESUMO

Remarkable advancement has been made in the application of nanoparticles (NPs) for cancer therapy. Although NPs have been favorably delivered into tumors by taking advantage of the enhanced permeation and retention (EPR) effect, several physiological barriers present within tumors tend to restrict the diffusion of NPs. To overcome this, one of the strategies is to design NPs that can reach lower size limits to improve tumor penetration without being rapidly cleared out by the body. Several attempts have been made to achieve this, such as selecting appropriate nanocarriers and modifying surface properties. While many studies focus on the optimal design of NPs, the influence of mouse strains on the effectiveness of NPs remains unknown. Therefore, this study aimed to assess whether the vascular permeability of NPs near the lower size limit differs among mouse strains. We found that the vessel permeability of dextran NPs was size-dependent and dextran NPs with a size below 15 nm exhibited leakage from postcapillary venules in all strains. Most importantly, the leakage rate of 8-nm fluorescein isothiocyanate dextran was significantly higher in the BALB/c mouse strain than in other strains. This strain dependence was not observed in slightly positive TRITC-dextran with comparable sizes. Our results indicate that the influence on mouse strains needs to be taken into account for the evaluation of NPs near the lower size limit.

17.
Materials (Basel) ; 15(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35955237

RESUMO

Determining the quality of Ti-6Al-4V parts fabricated by selective laser melting (SLM) remains a challenge due to the high cost of SLM and the need for expertise in processes and materials. In order to understand the correspondence of the relative density of SLMed Ti-6Al-4V parts with process parameters, an optimized extreme gradient boosting (XGBoost) decision tree model was developed in the present paper using hyperparameter optimization with the GridsearchCV method. In particular, the effect of the size of the dataset for model training and testing on model prediction accuracy was examined. The results show that with the reduction in dataset size, the prediction accuracy of the proposed model decreases, but the overall accuracy can be maintained within a relatively high accuracy range, showing good agreement with the experimental results. Based on a small dataset, the prediction accuracy of the optimized XGBoost model was also compared with that of artificial neural network (ANN) and support vector regression (SVR) models, and it was found that the optimized XGBoost model has better evaluation indicators such as mean absolute error, root mean square error, and the coefficient of determination. In addition, the optimized XGBoost model can be easily extended to the prediction of mechanical properties of more metal materials manufactured by SLM processes.

18.
Proc Natl Acad Sci U S A ; 119(32): e2204779119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914128

RESUMO

Earlier work has shown that siRNA-mediated reduction of the SUPT4H or SUPT5H proteins, which interact to form the DSIF complex and facilitate transcript elongation by RNA polymerase II (RNAPII), can decrease expression of mutant gene alleles containing nucleotide repeat expansions differentially. Using luminescence and fluorescence assays, we identified chemical compounds that interfere with the SUPT4H-SUPT5H interaction and then investigated their effects on synthesis of mRNA and protein encoded by mutant alleles containing repeat expansions in the huntingtin gene (HTT), which causes the inherited neurodegenerative disorder, Huntington's Disease (HD). Here we report that such chemical interference can differentially affect expression of HTT mutant alleles, and that a prototypical chemical, 6-azauridine (6-AZA), that targets the SUPT4H-SUPT5H interaction can modify the biological response to mutant HTT gene expression. Selective and dose-dependent effects of 6-AZA on expression of HTT alleles containing nucleotide repeat expansions were seen in multiple types of cells cultured in vitro, and in a Drosophila melanogaster animal model for HD. Lowering of mutant HD protein and mitigation of the Drosophila "rough eye" phenotype associated with degeneration of photoreceptor neurons in vivo were observed. Our findings indicate that chemical interference with DSIF complex formation can decrease biochemical and phenotypic effects of nucleotide repeat expansions.


Assuntos
Azauridina , Proteína Huntingtina , Doença de Huntington , Proteínas Mutantes , Mutação , Proteínas Nucleares , Fenótipo , Proteínas Repressoras , Fatores de Elongação da Transcrição , Alelos , Animais , Azauridina/farmacologia , Células Cultivadas , Expansão das Repetições de DNA , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Medições Luminescentes , Proteínas Mutantes/biossíntese , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/metabolismo
19.
J Nanobiotechnology ; 20(1): 311, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794602

RESUMO

The development of optical organic nanoparticles (NPs) is desirable and widely studied. However, most organic dyes are water-insoluble such that the derivatization and modification of these dyes are difficult. Herein, we demonstrated a simple platform for the fabrication of organic NPs designed with emissive properties by loading ten different organic dyes (molar masses of 479.1-1081.7 g/mol) into water-soluble polymer nanosponges composed of poly(styrene-alt-maleic acid) (PSMA). The result showed a substantial improvement over the loading of commercial dyes (3.7-50% loading) while preventing their spontaneous aggregation in aqueous solutions. This packaging strategy includes our newly synthesized organic dyes (> 85% loading) designed for OPVs (242), DSSCs (YI-1, YI-3, YI-8), and OLEDs (ADF-1-3, and DTDPTID) applications. These low-cytotoxicity organic NPs exhibited tunable fluorescence from visible to near-infrared (NIR) emission for cellular imaging and biological tracking in vivo. Moreover, PSMA NPs loaded with designed NIR-dyes were fabricated, and photodynamic therapy with these dye-loaded PSMA NPs for the photolysis of cancer cells was achieved when coupled with 808 nm laser excitation. Indeed, our work demonstrates a facile approach for increasing the biocompatibility and stability of organic dyes by loading them into water-soluble polymer-based carriers, providing a new perspective of organic optoelectronic materials in biomedical theranostic applications.


Assuntos
Nanopartículas , Fotoquimioterapia , Corantes , Polímeros , Água
20.
Biomed Opt Express ; 13(4): 1995-2005, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519254

RESUMO

Using in vivo multiphoton fluorescent dosimetry, we demonstrate that the clearance dynamics of Indocyanine Green (ICG) in the blood can quickly reveal liver function reserve. In normal rats, the ICG retention rate was below 10% at the 15-minute post-administration; While in the rat with severe hepatocellular carcinoma (HCC), the 15-minute retention rate is over 40% due to poor liver metabolism. With a 785 nm CW laser, the fluorescence dosimeter can evaluate the liver function reserve at a 1/10 clinical dosage of ICG without any blood sampling. In the future, this low-dosage ICG 15-minute retention dosimetry can be applied for the preoperative assessment of hepatectomy or timely perioperative examination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...